首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
测绘学   1篇
地球物理   5篇
地质学   10篇
海洋学   16篇
天文学   2篇
综合类   1篇
自然地理   1篇
  2020年   3篇
  2016年   1篇
  2015年   3篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
  1979年   1篇
  1974年   1篇
  1950年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
31.
Overlapping spreading centers (OSCs) are a type of ridge axis discontinuity found along intermediate and fast spreading centers. The ridges at these locations overlap and curve towards each other. and are separated by an elongate overlap basin. A high resolution Deep-Tow survey was conducted over the 12°54 N OSC (offset 1.6 km) on the East Pacific Rise in order to study the structure of a small OSC on a fine scale. A detailed tectonic study and Deep-Tow 3-D magnetic inversion were performed on the data. Towards the tips of both limbs, the apparent age of lava flows increases, the density of exposed faults and fissures increases, and the axial graben loses definition and disappears. No active hydrothermal vents were detected in the area. These observations suggest that the magmatic budget steadily decreases along axis approaching and OSC, even where the offset is small. In contrast with OSCs which have a large offset (>5 km), the 3-D magnetic inversion solution for this OSC produced no evidence for highly magnetized areas near the tip of either spreading center.  相似文献   
32.
The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates “from above”. As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.  相似文献   
33.
The ice cap Ulugh Muztagh in the central Kunlun Shan at the northern fringe of the Tibetan Plateau is a very isolated region with arid cold conditions. No observational, meteorological or glaciological ground truth data is available. Using the Moderate-resolution Imaging Spectroradiometer(MODIS) Level 1 radiance Swath Data(MOD02QKM) with a spatial resolution of 250 m, transient snow lines during the months of July to September in 2001 to 2014 are derived. Results are used to calibrate the physical based Coupled Snowpack and Ice surface energy and Mass balance model(COSIMA). The model runs on a representative detail region of Ulugh Muztagh(UM) on a digital elevation model with the same spatial resolution as the MODIS bands. In the absence of field observations, the model is driven solely by dynamically downscaled global analysis data from the High Asia Refined analysis(HAR). We compare remote sensing derived and modelled mean regional transient snow line altitudes in the course of consecutive summer seasons in 2008 to 2010. The resulting snow line altitude(SLA) and annual equilibrium line altitude(ELA) proxy of both methods coincide very well in their interannual variability in accordance with interannual variability of climatic conditions. Since SLAs of both methods do notconsistently agree on a daily basis a usage of remote sensing derived SLAs for model calibration in the absence of field observation data is only limitedly feasible for daily analysis. ELA approximation using the highest SLA at the end of ablation period may not be applied to UM because the negative winter mass balance(MB) is not reflected in the summer SLA. The study reveals moderate negative MB for UM throughout the modelling period. The mean regional MB of UM accounts for-523±410 mm w.e. a-1 in the modelling period. Hence UM seems not to belong to the area of the ‘Karakorum anomaly' comprising a region of positive mass balances in recent years which has its centre presumably in the Western Kunlun Shan.  相似文献   
34.
The variation of the equilibrium line altitude can be used as an indicator for glacier mass balance variability. Snow lines at the end of the ablation period are suitable proxies for the annual equilibrium line altitude on glaciers. We investigate snow lines at Purogangri ice cap on the central Plateau in order to study the interannual variability of glacier mass balance. Datasets of the daily Moderate Resolution Imaging Spectroradiometer snow product MOD10A1 were used to infer transient snow line variability during 2001–2012 and to derive regional‐scale, annual equilibrium line altitude. The Moderate Resolution Imaging Spectroradiometer snow albedo embedded within the snow product was compared with high‐resolution Landsat imagery. An albedo threshold was established to differentiate between ice and snow and the 13th percentile of the altitudes of snow‐covered pixels was chosen to represent the snow line altitude. The second maximum of the snow line altitudes in the ablation period was taken as a proxy for the annual equilibrium line altitude. A linear correlation analysis was carried out (1) between interannual variability of the equilibrium line altitude at Purogangri ice cap and various climate elements derived from the High Asia Reanalysis, and (2) between interannual variability of the equilibrium line altitude and the circulation indices North Atlantic Oscillation and Indian Summer Monsoon. Results suggest that air temperature and meridional wind speed above ground in July, as well as the lower tropospheric zonal wind in June and August play a crucial role in the development of the annual equilibrium line altitude.  相似文献   
35.
Another Revision of the Saprobic Index ‐ Why and What For? The 1990 revision of the German standard DIN 38410 “Determination of the Saprobic Index in Running Waters” had to be revised again in the course of a periodical updating due to the DIN regulations. Thus, practical experience can be taken into account as well as scientific development and the legal requirements. In this work, modifications of the standard are explained as far as it is not done within DIN 38410. Additionally, emerged suggestions and critiques are discussed. The necessity of quality assurance is especially emphasized. An essential part of the revision is the considerable enlargement of the list of indicators (macro‐ and microorganisms). Beside this, type‐specific ranges of the saprobic index are presented for the reference status in all types of German rivers. Consequently the saprobic system may be used as a metric for the biological assessment with the benthic fauna within the implementation of the European Water Framework Directive. Moreover, many details of the standard have been tightened up. The methods for further enlargements of these lists will also be described, especially the proceeding for the inclusion of neozoic organisms as indicators within the saprobic system. A formula concerning the statistical securing of the saprobic index is not given anymore, mainly because of the high variability of habitats and biocoenses in pristine environments. Further information for quality assurance is given as well.  相似文献   
36.
Authigenic carbonates from active methane seeps offshore southwest Africa   总被引:2,自引:1,他引:1  
The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2–5?m length indicates a maximum age of about 60,000–80,000?years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (–61.0?<?δ13C ‰ V-PDB?<?–40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4?<?δ18O ‰ V-PDB?<?+6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive δ18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby providing enough Ca2+ ions for pore solutions to reach gypsum saturation; this is thought to be promoted by the bio-irrigation and burrowing activity of benthic fauna. The δ18O–δ13C patterns identified in the authigenic carbonates are interpreted to reflect variations in the rate of AOM during the last glacial–interglacial cycle, in turn controlled by variably strong methane fluxes through the pockmarks. These results complement the conclusions of Kasten et al. in this special issue, based on authigenic barite trends at the Hydrate Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation–decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号